pressure, garnet coexisting with ilmenite at 1040° C contains $1.4\,\%$ TiO₂ but this decreases through runs at 1020° C, 1000° C to $0.8\,\%$ TiO₂ at 900° C.

In the pyrolite (less-40%-olivine) composition, garnet coexisting with ilmenite contains 0.9-1.6% TiO₂ at 1100° C, 0.7-1.1% TiO₂ at 1000° C and 0.4% TiO₂ at 950° C (Table 1). The data suggest a decrease in TiO₂ content at lower temperatures but are not sufficient to evaluate possible systematic pressure or compositional effects as opposed to analytical uncertainty in giving rise to the rather large spread in TiO₂ at any one temperature.

We have evidence for compositional control on the amount of TiO_2 soluble in the pyrope-almandine solid solution in that garnet from pyrolite ($\sim \mathrm{Mg}_{75}$) has lower TiO_2 content than that from basanite (Mg_{50-60}), crystallized at similar P,

T conditions (Tables 1, 2 and 5).

(b) Ilmenite. The ilmenites analyzed from both pyrolite and basanite composition are characterized by high (Fe, Mg) TiO₃ contents and low degrees of solid solution of $\rm Cr_2O_3$, $\rm Fe_2O_3$ and $\rm Al_2O_3$. This feature is very well illustrated in the TiO₂ vs MgO diagram utilized by Sobolev (1974) to illustrate variation in natural ilmenites from kimberlite pipes. This diagram can be contoured for $\rm Fe_2O_3$ content of ilmenite and such contours are approximately correct for ($\rm Cr_2O_3 + \rm Fe_2O_3$) solid solutions because of similar molecular weights of $\rm Cr_2O_3$ and $\rm Fe_2O_3$. The analyzed magnesian ilmenites ($\rm Mg_{42} - Mg_{48}$) from the experimental runs on pyrolite-less-40% olivine composition have $\rm <5\%\,Fe_2O_3 + \rm Cr_2O_3$ and the major substitution is $\rm Cr_2O_3$ (1.4–2.3% $\rm Cr_2O_3$) with minor $\rm Al_2O_3$ and possibly very minor $\rm Fe_2O_3$. In the basanite composition, $\rm Cr_2O_3$ is not detectable in ilmenite and the more iron-rich ilmenites ($\rm Mg_{15} - Mg_{28}$) require low $\rm Fe_2O_3$ contents to satisfy structural formulae constraints.

In Fig. 1, the experimentally synthesized ilmenites are compared with natural ilmenites of various paragenetic associations occurring within kimberlite pipes. The synthetic magnesian ilmenites most closely resemble these ilmenites occurring in intergrowth with diamond and those occurring in intergrowth with garnet or within garnet peridotite. Most discrete ilmenite crystals within kimberlite have higher Fe₂O₃ contents, implying higher oxygen fugacity at crystallization than the conditions pertaining within the piston-cylinder apparatus. The ilmenite megacrysts occurring in basanite magmas in N.S.W. (Binns, 1969; Wass, 1971) are similar to but have slightly higher Fe₂O₃ contents than those crystallized experimentally from the basanite. One ilmenite megacryst occurring within a mantle-derived nepheline benmoreite magma (Green et al., 1974) from S.E. Queensland has low MgO content and low Fe₂O₃ content, closely resembling the ilmenite crystallized from basanite at 900° C (i.e. after a moderately high degree of crystallization of the basanite liquid).

The data on ilmenite compositions synthesized in the presence of a water-rich fluid phase or with water dissolved in the silicate melt phase, demonstrate that the experimental techniques used maintain oxygen fugacity at low values, consistent with equilibrium with carbon (graphite or diamond) in the C—H—O system. Experiments in a basalt- $\rm H_2O$ — $\rm CO_2$ system (Brey and Green, 1975) at 30 kb using the oxygen buffering technique have shown that at 30 kb, 1100 to 1200° C with $f_{\rm O_2}$ buffered by the magnetite—haematite buffer, titanomagnetite rather than ilmenite coexists with garnet, and the garnet contains and radict solid

Table 1. Compositions of coexisting garnets and ilmenites in the pyrolite less 40% olivine ${\rm Ag_{75}Pd_{25}}$ capsules except

			CAN SEPTIME		67525 Paules enec			
Run conditions Phase	35 kb 1500° C "Dry" Ga*	40 kb 1100° C 0.3% H ₂ O		$^{29~\rm kb}_{1100^{\circ}~\rm C}_{0.3\%~\rm H_{2}O}$	28 kb 1100° C 0.3% H ₂ O		$\begin{array}{c} 21 \text{ kb} \\ 1100^{\circ} \text{ C} \\ 0.3\% \text{ H}_{2} \text{O} \end{array}$	
		Ga	Ilm	Ilm	Ga	Ilm	Ga	Ilm
SiO_2	41.3	41.3	0.6	0.6	41.9	0.6	41.3	0.9
TiO_2	1.4	0.9	57.1	56.8	1.6	57.2	1.3	55.9
Al_2O_3	20.9	21.7	0.6	0.9	20.7	0.9	21.1	1.0
Cr_2O_3	2.1	1.7	1.6	2.0	1.9	2.1	1.9	2.3
FeO	7.2	10.2	27.4	26.5	9.7	27.0	10.3	27.2
MnO	-	0.3	0.2	0.3	0.2	0.2	0.3	0.3
MgO	20.7	19.0	12.9	13.6	18.5	13.7	17.9	13.0
CaO	5.0	5.2	0.4	0.4	7.1	0.3	7.2	0.4
Na_2O	-	0.2		0.3	-	0.3		0.2
Mol. proportions	Lines	4.1	177		. 1	ayinti i	F 10	
100 Mg/Mg + Fe	83.5	76.8	45.8	47.9	77.2	47.4	75.8	45.8
Ca	12.7	13.2			17.5		17.9	10.0
Mg	72.9	66.7	45.8	47.9	63.7	47.4	62.2	45.8
Fe	14.4	20.1	54.2	52.1	18.8	52.6	19.9	54.2
$K_{D({ m Fe, Mg})}^{ m ilm-ga}$		3.9			3.76		3.70	

a Presence of ilmenite not confirmed by electron probe, garnet coexists with olivine, enstatite,

Table 2. Compositions of coexisting garnets and ilmenites in olivine basanite at various except column 1

Run conditions	30 kb 1280° C 4.5% H ₂ 0	25 kb 1160° C 14.5% H ₂ (25 kb 1140° C 0 4.5% H ₂ 0	$25 \text{ kb} \\ 1120^{\circ} \text{ C} \\ 24.5 \% \text{ H}_{2} \text{ C}$	30 kb 1050° C 0 4.5% H ₂ O		27 kb 1 050° C 4.5% H ₂ O		
Phase	Gaa	Gaa	Gaa	Gaa	Ga	Ilm	Ga	Ilm	
SiO_2	40.9	40.5	39.9	39.2	39.2	0.8	40.2	0.7	
TiO_2	1.1	1.2	1.6	1.8	1.8	53.4	1.4	53.7	
Al_2O_3	22.4	22.3	21.4	20.6	20.0	0.7	21.7	0.7	
FeO	8.5	12.9	15.9	17.8	17.8	38.3	19.0	39.2	
MnO	0.2	0.3	0.4	0.5	0.4	0.3	0.6	0.3	
MgO	18.7	15.4	13.8	12.4	11.5	6.7	12.4	6.0	
CaO	5.8	7.1	6.9	6.5	7.1	0.5	6.4	0.5	
Na_2O	0.1	_	0.1	0.2	0.3	0.3	0.3	0.2	
K_2O	0.1	Till et la				-	0.1	0.1	
Mol. proportions	ty Comment	e de la composition della comp	- Lumil	MR DUTE		11			
$100 \mathrm{Mg/Mg} + \mathrm{Fe}$	80.0	68.0	60.4	55.3	53.5	23.9	53.8	21.2	
Ca	15.0	18.5	18.0	17.3	19.1		16.5		
Mg	68.0	55.4	49.7	45.8	43.3	23.9	44.9	21.2	
Fe	17.0	26.1	32.3	36.9	37.6	76.1	38.6	78.8	
$K_{D({ m Fe,Mg})}^{ m ilm-ga}$					3.68			4.31	

^a No ilmenite present, garnet coexisting with liquid and clinopyroxene.